Vector solitons in nearly one-dimensional Bose-Einstein condensates
Year: 2006
Authors: Salasnich L., Malomed B.A.
Autors Affiliation: CNISM, I-35131 Padua, Italy;
Univ Padua, CNR, INFM, Dipartimento Fis G Galilei,Unita Padova, I-35131 Padua, Italy;
Tel Aviv Univ, Dept Interdisciplinary Studies, Sch Elect Engn, Fac Engn, IL-69978 Tel Aviv, Israel
Abstract: We derive a system of nonpolynomial Schrodinger equations for one-dimensional wave functions of two components in a binary self-attractive Bose-Einstein condensate loaded in a cigar-shaped trap. The system is obtained by means of the variational approximation, starting from the coupled three-dimensional (3D) Gross-Pitaevskii equations and assuming, as usual, the factorization of 3D wave functions. The system can be obtained in a tractable form under a natural condition of symmetry between the two species. A family of vector (two-component) soliton solutions is constructed. Collisions between orthogonal solitons (ones belonging to the different components) are investigated by means of simulations. The collisions are essentially inelastic. They result in strong excitation of intrinsic vibrations in the solitons, and create a small orthogonal component (“shadow”) in each colliding soliton. The collision may initiate collapse, which depends on the mass and velocities of the solitons.
Journal/Review: PHYSICAL REVIEW A
Volume: 74 (5) Pages from: 053610-1 to: 053610-6
KeyWords: ultracold atomsDOI: 10.1103/PhysRevA.74.053610ImpactFactor: 3.047Citations: 92data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-24References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here