Magnetic-field measurement and analysis for the Muon g-2 Experiment at Fermilab

Year: 2021

Authors: Albahri T., Anastasi A., Badgley K., Baessler S., Bailey I., Baranov VA., Barlas-Yucel E., Barrett T., Bedeschi F., Berz M., Bhattacharya M., Binney HP., Bloom P., Bono J., Bottalico E., Bowcock T., Cantatore G., Carey RM., Casey BCK., Cauz D., Chakraborty R., Chang SP., Chapelain A., Charity S., Chislett R., Choi J., Chu Z., Chupp TE., Conway A., Corrodi S., Cotrozzi L., Crnkovic JD., Dabagov S., Debevec PT., Di Falco S., Di Meo P., Di Sciascio G., Di Stefano R., Driutti A., Duginov VN., Eads M., Esquivel J., Farooq M., Fatemi R., Ferrari C., Fertl M., Fienberg AT., Fioretti A., Flay D., Froemming NS., Gabbanini C., Galati MD., Ganguly S., Garcia A., George J., Gibbons LK., Gioiosa A., Giovanetti KL., Girotti P., Gohn W., Gorringe T., Grange J., Grant S., Gray F., Haciomeroglu S., Halewood-Leagas T., Hampai D., Han F., Hempstead J., Herrod AT., Hertzog DW., Hesketh G., Hibbert A., Hodge Z., Holzbauer JL., Hong KW., Hong R., Iacovacci M., Incagli M., Kammel P., Kargiantoulakis M., Karuza M., Kaspar J., Kawall D., Kelton L., Keshavarzi A., Kessler D., Khaw KS., Khechadoorian Z., Khomutov NV., Kiburg B., Kiburg M., Kim O., Kim YI., King B., Kinnaird N., Kraegeloh E., Kuchinskiy NA., Labe KR., LaBounty J., Lancaster M., Lee MJ., Lee S., Li B., Li D., Li L., Logashenko I., Campos AL., Luca A., Lukicov G., Lusiani A., Lyon AL., MacCoy B., Madrak R., Makino K., Marignetti F., Mastroianni S., Miller JP., Miozzi S., Morse WM., Mott J., Nath A., Nguyen H., Osofsky R., Park S., Pauletta G., Piacentino GM., Pilato RN., Pitts KT., Plaster B., Pocani CD., Pohlman N., Polly CC., Price J., Quinn B., Raha N., Ramachandran S., Ramberg E., Ritchie JL., Roberts BL., Rubin DL., Santi L., Schlesier C., Schreckenberger A., Semertzidis YK., Shemyakin D., Smith MW., Sorbara M., Sttzckinger D., Stapleton J., Stoughton C., Stratakis D., Stuttard T., Swanson HE., Sweetmore G., Sweigart DA., Syphers MJ., Teubner T., Tewsley-Booth AE., Thomson K., Tishchenko V., Tran NH., Turner W., Valetov E., Vasilkova D., Venanzoni G., Walton T., Weisskopf A., Welty-Rieger L., Winter P., Wolski A., Wu W.

Autors Affiliation: Argonne Natl Lab, Lemont, IL USA; Boston Univ, Boston, MA 02215 USA; Brookhaven Natl Lab, Upton, NY 11973 USA; Budker Inst Nucl Phys, Novosibirsk, Russia; Inst Basic Sci IBS, Ctr Axion & Precis Phys CAPP, Daejeon, South Korea; Cornell Univ, Ithaca, NY USA; Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA; Sez Trieste, Grp Collegato Udine, Ist Nazl Fis Nucl, Udine, Italy; Lab Nazl Frascati, Ist Nazl Fis Nucl, Frascati, Italy; Sez Napoli, Ist Nazl Fis Nucl, Naples, Italy; Sez Pisa, Ist Nazl Fis Nucl, Pisa, Italy; Sez Roma Tor Vergata, Ist Nazl Fis Nucl, Rome, Italy; Sez Trieste, Ist Nazl Fis Nucl, Trieste, Italy; Ist Nazl Ottica, CNR, Pisa, Italy; James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22807 USA; Johannes Gutenberg Univ Mainz, Inst Phys & Cluster Excellence PRISMA, Mainz, Germany; Joint Inst Nucl Res, Dubna, Russia; Korea Adv Inst Sci & Technol KAIST, Dept Phys, Daejeon, South Korea; Univ Lancaster, Lancaster, England; Michigan State Univ, E Lansing, MI 48824 USA; North Cent Coll, Naperville, IL USA; Northern Illinois Univ, De Kalb, IL USA; Northwestern Univ, Evanston, IL USA; Regis Univ, Denver, CO USA; Scuola Normale Super Pisa, Pisa, Italy; Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai, Peoples R China; Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai, Peoples R China; Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany; Univ Molise, Campobasso, Italy; Univ Cassino & Lazio Merid, Cassino, Italy; Univ Napoli, Naples, Italy; Univ Pisa, Pisa, Italy; Univ Roma Tor Vergata, Rome, Italy; Univ Trieste, Trieste, Italy; Univ Udine, Udine, Italy; UCL, Dept Phys & Astron, London, England; Univ Illinois, Urbana, IL 61801 USA; Univ Kentucky, Lexington, KY USA; Univ Liverpool, Liverpool, Merseyside, England; Univ Manchester, Dept Phys & Astron, Manchester, Lancs, England; Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA; Univ Michigan, Ann Arbor, MI 48109 USA; Univ Mississippi, University, MS 38677 USA; Univ Oxford, Oxford, England; Univ Rijeka, Rijeka, Croatia; Univ Texas Austin, Dept Phys, Austin, TX 78712 USA; Univ Virginia, Charlottesville, VA USA; Univ Washington, Seattle, WA 98195 USA; Oak Ridge Natl Lab, Oak Ridge, TN USA; Cockcroft Inst Accelerator Sci & Technol, Warrington, Cheshire, England; Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China; Key Lab Particle Phys Astrophys & Cosmol MOE, Shanghai, Peoples R China; Lebedev Phys Inst, Moscow, Russia; NRNU MEPhI, Moscow, Russia; Shenzhen Technol Univ, Shenzhen, Peoples R China; Novosibirsk State Univ, Novosibirsk, Russia.

Abstract: The Fermi National Accelerator Laboratory (FNAL) Muon g – 2 Experiment has measured the anomalous precession frequency a(mu) = (g(mu) – 2)/2 of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7 degrees C. The measured field is weighted by the muon distribution resulting in (omega) over tilde (p)’, the denominator in the ratio omega(a)/(omega) over tilde (p)’ that together with known fundamental constants yields a(mu). The reported uncertainty on (omega) over tilde’(p) for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb.

Journal/Review: PHYSICAL REVIEW A

Volume: 103 (4)      Pages from: 42208-1  to: 42208-35

More Information: We thank the Fermilab management and staff for their strong support of this experiment, as well as the tremendous support from our university and national laboratory engineers, technicians, and workshops. The Muon g-2 Experiment was performed at the Fermi National Accelerator Laboratory, a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support for the experiment was provided by the Department of Energy offices of HEP and NP (USA), the National Science Foundation (USA), the Istituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (UK), the Royal Society (UK), the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements No. 690835 and No. 734303, the National Natural Science Foundation of China (Grants No. 11975153 and No. 12075151), MSIP, NRF and IBS-R017-D1 (Republic of Korea), the German Research Foundation (DFG) through the Cluster of Excellence PRISMA+ (EXC 2118/1, Project ID 39083149).
KeyWords: Vacuum Polarization Contributions; Temperature-dependence; Proton Nmr; Moment; Susceptibility; Terms
DOI: 10.1103/PhysRevA.103.042208

ImpactFactor: 2.971
Citations: 65
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-03
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here