Quantum Signature of Analog Hawking Radiation in Momentum Space
Year: 2015
Authors: Boiron D., Fabbri A., Larre PE., Pavloff N., Westbrook CI., Zin P.
Autors Affiliation: Univ Paris Sud, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France; Ctr Studi & Ric E Fermi, I-00184 Rome, Italy; Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy; Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain; Univ Valencia, CSIC, IFIC, E-46100 Burjassot, Spain; Univ Paris Sud, CNRS UMR 8627, Lab Phys Theor, F-91405 Orsay, France; Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, I-38123 Povo, Italy; Univ Paris Sud, CNRS, Lab Phys Theor & Modeles Stat, UMR 8626, F-91405 Orsay, France; Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
Abstract: We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one-and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.
Journal/Review: PHYSICAL REVIEW LETTERS
Volume: 115 (2) Pages from: 25301-1 to: 25301-5
More Information: This work was supported by the French ANR under Grant No. ANR-11-IDEX-0003-02 (Inter-Labex Grant QEAGE), by the Triangle de la Physique, and by the Institut Francilien pour la Recherche en Atomes Froids. P. Z. was supported by the National Science Centre Grant No. DEC-2011/03/D/ST2/00200.KeyWords: HierarchyDOI: 10.1103/PhysRevLett.115.025301ImpactFactor: 7.645Citations: 39data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-10References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here