Self-bound dipolar droplet: A localized matter wave in free space

Year: 2016

Authors: Baillie D., Wilson RM., Bisset RN., Blakie PB.

Autors Affiliation: Univ Otago, Ctr Quantum Sci, Dept Phys, Dunedin 9016, New Zealand; Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9016, New Zealand; US Naval Acad, Dept Phys, Annapolis, MD 21402 USA; Univ Trento, INO CNR BEC Ctr, Via Sommarive 14, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, Via Sommarive 14, I-38123 Povo, Italy.

Abstract: We demonstrate that a dipolar condensate can be prepared into a three-dimensional wave packet that remains localized when released in free space. Such self-bound states arise from the interplay of the two-body interactions and quantum fluctuations. We develop a phase diagram for the parameter regimes where these self-bound states are stable, examine their properties, and demonstrate how they can be produced in current experiments.

Journal/Review: PHYSICAL REVIEW A

Volume: 94 (2)      Pages from: 21602-1  to: 21602-5

More Information: The authors acknowledge valuable conversations with F. Ferlaino. D.B. and P.B.B. acknowledge the contribution of NZ eScience Infrastructure (NeSI) high-performance computing facilities, and support from the Marsden Fund of the Royal Society of New Zealand. R.M.W. acknowledges partial support from the National Science Foundation under Grant No. PHYS-1516421. R.N.B. acknowledges support by the QUIC grant of the Horizon2020 FET program and by Provincia Autonoma di Trento.
KeyWords: self-bound states
DOI: 10.1103/PhysRevA.94.021602

ImpactFactor: 2.925
Citations: 145
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-10
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here