Experimental characterization of the energetics of quantum logic gates

Year: 2020

Authors: Cimini V., Gherardini S., Barbieri M., Gianani I., Sbroscia M., Buffoni L., Paternostro M., Caruso F.

Autors Affiliation: Univ Roma Tre, Dipartimento Sci, Via Vasca Navale 84, I-00146 Rome, Italy; Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy; LENS, Via N Carrara 1, I-50019 Sesfto Fiorentino, Italy; QSTAR, Via N Carrara 1, I-50019 Sesfto Fiorentino, Italy; SISSA, Via Bonomea 265, I-34136 Trieste, Italy; Ist Nazl Ottica CNR, I-50125 Florence, Italy; Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 4, I-00185 Rome, Italy; Univ Florence, Dept Informat Engn, Via S Marta 3, I-50139 Florence, Italy; Queens Univ, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland.

Abstract: We characterize the energetic footprint of a two-qubit quantum gate from the perspective of non-equilibrium quantum thermodynamics. We experimentally reconstruct the statistics of energy and entropy fluctuations following the implementation of a controlled-unitary gate, linking them to the performance of the gate itself and the phenomenology of Landauer’s principle at the single-quantum level. Our work thus addresses the energetic cost of operating quantum circuits, a problem that is crucial for the grounding of the upcoming quantum technologies.

Journal/Review: NPJ QUANTUM INFORMATION

Volume: 6 (1)      Pages from: 96-1  to: 96-8

More Information: We thank A. Belenchia for a critical reading of the manuscript and useful comments. S.G., L.B., and F.C. were financially supported by the Fondazione CR Firenze through the project Q-BIOSCAN and QUANTUM-AI, PATHOS EU H2020 FET-OPEN Grant No. 828946, and UNIFI Grant Q-CODYCES. S.G. also acknowledges the MISTI Global Seed Funds MIT-FVG grant program. M.P. gratefully acknowledges support by the H2020 Collaborative Project TEQ (Grant Agreement 766900), the SFI-DfE Investigator Program through project QuNaNet (grant number 15/IA/2864), the Leverhulme Trust through the Research Project Grant UltraQuTe (grant number RGP-2018-266) and the Royal Society through the Wolfson Fellowship scheme (RSWF R3 183013), and the International Exchange scheme (grant number IEC R2 192220).
KeyWords: THERMODYNAMICS
DOI: 10.1038/s41534-020-00325-7

ImpactFactor: 7.385
Citations: 29
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-24
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here