Intense proton acceleration in ultrarelativistic interaction with nanochannels
Year: 2020
Authors: Gizzi LA., Cristoforetti G.,1, Baffigi F., Brandi F., D’Arrigo G., Fazzi A., Fulgentini L., Giove D., Koester P., Labate L., Maero G., Palla D., Romé M., Russo M., Terzani D., Tomassini P.
Autors Affiliation: 1ILIL, Istituto Nazionale di Ottica, CNR, Pisa, Italy
2INFN, Sezione di Pisa, Pisa, Italy
3Istituto per la Microelettronica e Microsistemi, CNR, Catania, Italy
4Dipartimento di Energia, Politecnico di Milano, Milan, Italy
5INFN, Sezione di Milano, Milan, Italy
6Dipartimento di Fisica, Universitá degli Studi di Milano, Milan, Italy
Abstract: We show that both the flux and the cutoff energy of protons accelerated by ultraintense lasers can be
simultaneously increased when using targets consisting of thin layers of bundled nanochannels. Particle-in-cell
simulations suggest that the propagation of an electromagnetic field in the subwavelength channels occurs via
excitation of surface plasmon polaritons that travel in the channels down to the end of the target, sustaining
continuous and efficient electron acceleration and boosting acceleration of protons via enhancement of the target
normal sheath acceleration mechanism.
Journal/Review: PHYSICAL REVIEW RESEARCH
Volume: 2 (3) Pages from: 33451-1 to: 33451-6
More Information: This research has received funding from the Consiglio Nazionale delle Ricerche-funded Italian Research Network ELI-Italy (D.M. No. 631 08.08.2016) and from the L3IA-INFN Experiment of CSN5. We thank P. Londrillo for fruitful and enlightening discussions on numerical simulations.KeyWords: Surface-plasmons; Laser; GenerationDOI: 10.1103/PhysRevResearch.2.033451Citations: 20data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-24References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here