Data on the target search by a single protein on DNA measured with ultrafast force-clamp spectroscopy

Year: 2019

Authors: Monico C., Tempestini A., Gardini L., Pavone FS., Capitanio M.

Autors Affiliation: LENS European Lab Nonlinear Spect, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy; Univ Florence, Dept Phys & Astron, Via Sansone 1, I-50019 Sesto Fiorentino, Italy; CNR, Natl Inst Opt, Largo Fermi 6, I-50125 Florence, Italy

Abstract: The mechanism by which proteins are able to find small cognate sequences in the range from few to few tens of base pairs amongst the millions of non-specific chromosomal DNA has been puzzling researchers for decades. Single molecule techniques based on fluorescence have been successfully applied to investigate this process but are inherently limited in terms of spatial and temporal resolution. We previously showed that ultrafast force-clamp spectroscopy, a single molecule technique based on laser tweezers, can be applied to the study of protein-DNA interaction attaining sub-millisecond and few base-pair resolution. Here, we share experimental records of interactions between a single lactose repressor protein and DNA collected under different forces using our technique [1]. The data can be valuable for researchers interested in the study of protein-DNA interaction and the mechanism of DNA target search, both from an experimental and modeling point of view. The data is related to the research article “Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching” [2]. (C) 2019 The Authors. Published by Elsevier Inc.

Journal/Review: DATA IN BRIEF

Volume: 24      Pages from: 103918-1  to: 103918-5

More Information: This work was supported by the European Union?s Horizon 2020 research and innovation program under grant agreement no. 654148 Laserlab-Europe and by Ente Cassa di Risparmio di Firenze.
KeyWords: Optical tweezers; Force-clamp spectroscopy; Lactose repressor; DNA; Single molecule biophysics
DOI: 10.1016/j.dib.2019.103918

Citations: 1
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-24
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here